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Absiract; This paper discusses deficiencies of lechniques widely adopted in modal analysis for curve fiting and introduces a new
direct simutlancous modal approximation method, significantly improving the accuracy of modal parameters reconstructed from
cxperimental measurements. The method employs a Newton licration technigue approximute simultancously ali cigenvalues
and cigenveciors of ihe strugture. A major advantage of the method is {hat it minimises the global square error for all available
data, enahling accurale Teconastruclion of modal parameters from the data contamiag significant levels ol noise.

i INTRODUCTION

A common method of predicting the behaviour of real sysiems
in many arcas of science and engincering s to use relevant
mathematical models. Ong of the fundamental problems is
the verification of such modals using data from experimental
measurements. In particular, specific parameters of the model
have 1o be found that provide the best possible match between
the Behavieur of the model and the cxperimental obscrvations.
This paper deals with the identification of parameters of math-
eraatical models of structures used for heir vibration analysis.
There are essentially two types of mathematical models used
for the linearized vibration analysis of a structure:

(1) Spatial models, which incorporate structural mass, stiff-
ness and damping matrices determined along a selected
sot of coordinates on the structure. To date, there are
no eifective methods of determining such matrices on the
hasis of experimenial vibration measurenient,

{2) Modal mode}, in which the dynamic characieristics of
(he structure are described using Lhe eigenvalucs (natu-
wl frequencies) and eigenveciors (mode shapes) of the
structure.

Spatial modcls are ususily cbiained as a resull of discrete
snodeiling of the sysiem, cither analytically or using a Finie
Element compuier algorithm. Maodal medels can be obtained
gither from their spatial equivalents by performing a (numer-
iealy eigenvalue analysis, or from an experiment, Dy approx-
imating the measured Frequency Response Functions (FRE}
by an appropriate sct of lunctions.

The two models outlined above are mathematicatly equivalent,
snd if the data is accurate and complete, one model can be
obtained from the other with a precision limited only by the
accuracy of the numerical compuiations,

The real problem arises when we allempt 1o use the experi-
mentatly identificd modal model (cigenvalues and cigenvec-
1ors) (o cstimate the systom mutrices. Such a procedure is de-
sirable for many reasons, for example W identify and monitor
structural changes {cracks cic..). Because of practical lmita-
tons associated with experimental procedures, only a limited
number of eigenvalues and cigenvectors can be obtained. Fur-
thermore, experimental vitration measurements CORLAIM NOise
and consequently the modal parameters a#e reconsirucicd with
CITOFS.

The process of extracting modal properties from the experi-
aental vibration measurement has developed over the years
into a specinlised engineering discipline called “experimental
modal analysis™

‘The main purpose of this paper is to discuss deficiencies of
the existing modal analysis algorithms and introdJce & new
algorithm, significantly increasing the accuracy of the recon-
strucled eigenvalues and eigenvectors from noisy experimen-
1al MeasuIcImens.

3 PRINCIPLES OF MODAL ANALYSIS

& discrete (finfie dimensional) modet of & mechanical system
reduced 10 selected set of nocoordinales 18 deseribed by a
tincar differential equation

32 -

’H’i‘%}% + (%;— +kr=F {1}
where: 2 - is the pumber of physical coordinaies in the sysiem,
2 = {wy.2n)7 - is the n-dimensional vector ol physical dis-
placcrnent COOrAinales, £ = (#y... )7 - is the n-dimensional
vector of excilation forces along components of @ 3 m, k and
¢ are the o » n symmeiric mass, stiffness and damping ma-
rices of the reduced discrete system. Matrices ¢ and &
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constitute the so called spatial model of the structure.

In this paper, we shall consider systems with symmielric mass,
damping and stilTness matrices m, ¢ and k. Discrete models
with symmuetric matrices are very important for two reasons:

(1) they can represent a great majority of mechanical, civil
and other lincarised sysiems, when their small vibrations
arpund the equilibrium position are considered

(2} they aliow us to reconstruct eigenvalues and cigenveclors
of the system from the incompiete measurements of the
Frequency Response Functions (FREF) (for example from
a singie column of the FRF matrix in the bost case)

Using a 2n-dimensional variable

representing a sei of coordinates, extended by sysiem velocl-
tics, equation (1) is transformed to the following lorm

Ar+Be =0 )]

e, kO . / I
where A4 = K m 0 B = ( 0 —m )= \ a

Note, that since m, ¢ and & are symmelric, A and # are also
symmetric. Il can be shown that the mass matrix i is positive
definite, so all is cigenvalues are pos‘it;xc anci its nverse
existe. Note, that if ™! exists, then A1 also exists.

2.1 Eigenvalues, eipenvectors und their properties

To study free vibration we need 0 consider equation (3} with-
out exicrnal excitation Le. (J = 0.

Ar+ Bt =0 {43

—t

Multiplying both sides of (4) by 47° we have:

&= A (5)
{j I
R 1o
—m h em e/
Supposc A has distinet eigenvalues Ay As, and correspond-
ing cigenvectors 0. Uy, . Then webave 107 Al = !\J Jviz:
i

;
where we denoted A = ~A7 H = &

HI is a diagonal matrix containing all system cigenvalues
an(f U = {t/}...l7a,) 18 the eigenvector matrix. The upper and
lower parts of 2 are relaled: the upper parls represent dis-
placements and lower parts corresponding velocities. Conse-
guently, the upper and lower paris of cach eigenvector L7, are
also related: the upper parts of & are arnplitudes of displace-
ments and the lower parts are amplitudes of the corresponding
velocities :

[ Uy - 3,
U, = ( " ) , L=1,.,2n {6

Choose &4 = UpexpApt, & =1,.., 27 as a basis of a lincar
space 5. All non-trivial solutions of (3) belong to this linear
space. [t means, that any free motion of the system, described
by equation {3) can be presenied as a lincar combination of
Eg.

Since matrix A is real, its sigenvalues muast be real or occour in
complex conjugaie pairs, In this paper we shall consider only
the latter case. Consequently, the corresponding eigenvectors
must also occur in complex conjugate pairs. Assume, that alt
eigenvectors in U are normalized, so that they have a unit
norm. Since a real matrix A I8 not symmetric, 118 eigenvector
matrix {7 is NOT orthogonal. However, when matrices A and
B are symmetric, we have the [ollowing relationships

T 5 [ -
and 0T RU = }zf} 7

mc[ ‘LE and EB are diagonal matrices md Eh = A k=
i i

.i....‘2n deg fm = \/ 4. as the modal masses and 7, =
v I,;\ ko= 1.0 as the modal stiffnesses. We have Ay =

1,’ i\, Now define mass normalized elgenvectors @y as fol-

Tows @

i we [’ dr N
e A b o Lok=1,..%2n
HEJ ( e i DA } ' '
{8)

Considering the above deliniton in (7) we have the following

relationships for the mass normalized eigenvectors @
VUAT = [ and 2TBD = m )
We can arrange all eigenvalues in ?RJ s that Ak = Aken. in-
A YR (R N
. [ G
troducing A = o .0 we have /\‘ = f A A }
iz
L0 O A, \ !

The t:orrcsp(mdim cigenvectors will be £fy, = Ui n. Comse-
quently, ¢ = dprn, and 1 x 20 malriz ¢ can be writlen as
follows:

(10

where o 15 he n x n matrix of eigenvesiors. As we shall
see later on, we can identfy clements of matrices A and
directly from experimental measurements,

12 Foreed vibration
Consider equation (33 for 2 non-zere vector of forces F. De-
fine a new set of modal coordinates = such that

&= Pz {ih

Introducing modal coordinates = into {3) and pre-multiply by
&7 we have @7 AD2 4 9T EDr = 70, iniroducing the
relationships in {9) we oblain

it Az=0T0 =R, (12

where & = 97 i3 the modal excitation vector. Equa-
tion {12) represents a st of uncoupled ordinary differential
equations & 4 A,z = K, , § = 1..2n . Considering har
monic excilation of the form F' = Fyexpiwt we have {) =
Oy expiwl and A = Hpexpiwl. A particular solution of the
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r-th equation in (12) is therefore 2. = ??:)éﬁ,sz\m) axpiwil. Intro-

- . Fiw — A 0
ducing a diagonal matrix [C'] = E 3 . <
O Tl — ,\,.J
we can combine all equations » = 1..2n lo oblain zp =

[C] @7 Qg . Returning to coordinates i according to (11) we
have ¢ = @ [C] @7, Solution of the initial set of equa-
tions along coordinaes z, according 10 (2} 18 the upper parl
of &. Therclore

xg = o [C] A e
T

(13

liw =2 7 A

!

i

3
=
=

|
T
b3

4

Equation (13) represents a modal model of the structure,
when matrices &, m, and ¢ are symmetric and there arc no
multiple eigenvalues.

2.3 Freguency Response Function (FREF) matrix H

The frequency response functiop matrix (FRF) is the malrix
conlaining the responscs of the system at coordinate & o 2 unil
force harmonic exciiation at coordinaie j, in some frequency
FAREE {Wimin, whanx ) Where &, 7 = &, .o To calculate elemenis
of If, by (W) we consider Fy = (007007, with £} = 1.
We then have:

H
PhesiEiy
Hig (w) = wpg () = Z (M Srd

(14)

Preidis i

ta — ,\jj

where 7 - is the excitation coordinate number, & - 15 the ree
sponse coordinate number, # - s the mode (cigenvector} num-
ber and @ indicates 2 complex conjugate of . Note, that
matrix Ffis symmetrical, because by, (w) = by {w),

ol = Mg
CESS)

24 FExperimenial measurements

In practice, # is very difficult and costly o measure ali ele-
ments of matrix #7. Therelore, we need to develop a lechnigue
of reconstructing all eigenvectors from only the {ragment of
H which is available, The simplest case is when a single 7-th
column /17 is available, This corresponds o the practical sil-
uation when the response of the structure due to 2 single point
excitation at coordinate §is measured over a grid of points.
Note, that it is always desirable to measure more than 4 sin-
gle column of /. (For a method to find the best possible
excitation points from a given grid see references [13[2]
Hiere we shall assume, thar we measure elemcnis /3;;;; (w) for
E=1,.nand 7 = 7, ..., 5, where functions .;I;\-J' {iw) con-
13in measurement noise.{see refercnces [3141(3D

3 ALGORITHM REQUIREMENTS

We would like o identify the system parameters (eigenvalues
and eigenvectors) from the experimenially measured set of
functions Nig; (w). Examining equation (14), we can see that
a single column (or row) of A could theoretically contain all
the data necessary 1o reconsiruct all cigenvalues and cigen-
vectors and therefore also other columng {rows) of maltrix {4,
Mote, that it is quite possible (and frequently encoontered in

practice), that not all modes would have sufficiently large co-
efficients @;; 1o be able to be identified. (For a more detailed
analysis of this topic see reference [11.)

We emphasize, that the measured data contains errors as well
as noise. Therefore we should alm to approximate the noisy
experimental data by suitable analytical functions, thercby
providing a "filter” for the noise. According to results ob-
taingd in the previous sections, the best analytical function
t0 approximate a single element F’l‘;;j {w} of the real system
should be of the form of equation (14},

In order to obtain a good approximation for the sysiem eigen-
values and eigenvectors, we have 1o obtain the best simul
taneous approximation for all measured functions kg, (W) -
elements of the FRF matrix £/, Let us consider a situation,
where we reconstruct all possible eigenvectors from celumns
J1-..0ar of matrix H. We can define the error of approxima-

non £, for a single function .Tia as follows:
Lon €5 107 2 single Tuncuon /Ay as iolows:
& - -
L I T Phe¥is | PRy
Epy (W) = Py () ~ WLIIZE g ERT {15
; / L T — Mg W Ay

s=1
Optimal A, {cigenvalues) and <o {cizgenvectors) are obtained
when the {ollowing orror function is minimised ;

where W;{w} is an optional weighting function, introduced
1o allow user choice of setting priorities in the approxima-
tion process, MNoie, that all cigenvalues A, as well as all
eigenvectons oy, in the above formulation are common {or
all measured functions fr,,g.j {w). When a global minimum
of the above error function {16} is found. all eigenvalues
Ay s well as all eigenvectors . are optimat in the sense
of the Le-nomm. When more than a single column of f i
available,{M = 1} there is data redundancy for cigenvectors
e cnabling their determination with belter accuracy,
Mathematically, the least square problem delined above is not
simple, because we scek Ay and @, simultaneocusly, which
makes the preblem neon-linear. Standard methods of linear
algebra are not dircctly applicable. One of the possible solu-
tions is o fix ail Ay, which enables determination of g, by
a standard lnear least square method. Unfortunately, in this
approach, further iterations in a multi-dimensional space of A,
s = 1,..,5 are further required, which makes the algorithm
numerically inefficicnt,

4  EXISTING ALGORITHMS

Practical "curve fiting” methods for modal analysis, incorpo-
rated in the "state of the ant” commercial software use a two
step approach o determine modal properties {rom experimen-
tally obtained FRFs.

{1} estimation of eigenvalues

{2) estimation of cigenvectlors, by approximating each sin-
gle function fu; (w) or a linear combinations of sclected
functions fz; () at a time,
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Such an approach does not minimize the least square orror
defined in the previous section (cquation (16)). As a con-
sequence, eigenvalues A, as well as cigenveciors gy, deter-
mined from such a process are frequentdy far from optimal. It
is well known that gven small errors in the system cigenvalues
lead to significant errors for the corresponding cigenvesiorns.
In the previous section we noted, that if the true sysiem eigen-
values are known, then the ¢orresponding eigenvections can be
found by a linear least square method based on (16} There-
fore, any criticism of the currently used methods should con-
tain a detailed analysis of the methods used for performing
siep 1) above, Most "advanced” methods of scarching for
slobal” eigenvalues used today are based on the fitting of ra-
tional polynomials. By performing the addition of all fractions
in (14), any element of the FRF matrix Ay {w) can be pre-
sented ina form ol a ratio of two complex polynomials P (w)
and {J {w): i (w) = Py (w) /@ (w). One can formulaie the
error function ex; {w) as follows:

erj (w) = figg (w) = Py {0}/ QW) (17

and search for polynomial cosflicients minimizing 3, N

Since such a least square problem Is non-lincar and there a#c
no efficient methods 1© soive it, the following technigue is
commoniy used. Equation (17) is multiplied by () (w) which
gives:

Ek}‘ (\.d) = €k {uj) C;" {(.u‘) == Q {'.u‘} ;f;j —~ JDA-J {:-.,;)} (18)
iLis quite easy 0 {ind such coelficicnts of polynomials F ;j {wr)
and (¢ {w) which minimize the error function 37, £ (@),
because the problem is now linear. Then, rocts of the poly-
nomiat (7 () can be found, which are the sigenvalues of the
system, because ( (w) is precisely the common denominator
for all fractdons. All is fine, except that the wrong errov
function has been miniraised, 1L i pmeiblc to improve the
quality of approximation somewhat, by introducing the error
weighting function W FE {w). Unforlunately, the best weight-
ing function happens to be the very polynomial § {w) we have
to find, For this reason, the above procedure velds reason-
able results, only when the measurcd function 2y (w) containg
very little noise.

The major shoricomings of a rational polynomtial approach
can be summarised as follows:

(1} The rational polynomial pracedure loses its reliability as
the level of measurement noise increases.  Polynornials
seem 1o folow the noise “wrinkles™ on the FRF [unclion
and do ol provide a robust modal filter.

The procedure is formulated for a single function h,;J {wh,
which may not give the best approximation {or true sys-
lem eigenvaiues which should be comunon o all FRFs.
An improved version of the method approximates & lines
combination of all available functions zk'j (z;;jfzkj {w).
This approach 13 also deficient, despiie the fact that in
some cases # can produce quite good results. I defi-
ciency arises from the fzct, thar by adding ali fractions
we have no guarantee that some of them would not sim-
ply cancel out, leaving litde or no information about the

P
2]
R

corresponding mode. (Consider for example a symmetric

mode shape, for which the sum of all fraction numeratoss

18 7610.3

Mumerical erors increase significandy with the number

of modes. For example considering a system with 20

modes reguires evaluation of complex polynomials of 40-

th order. Nomerica! generation and evaluation of rots of

such polynomials introduces significant numerical errors
even when all compuialions are performed using extended
numerical precision.

{4) Ealional polynomial approximation has o be applied
subsals of the experimenial dma containing only a lew
modes (approximation 18 performed considering segments
of the available frequency range). Such a procedure dogs
not produce the optimal approximation for all available
data simultangously.

{5y The method does not provide satisfactory approximation
accuracy in the case of multiple (or very close) eigenval-
ues

(63 Iuis very difficult o control the domain for the cigenvalue
approximation. For example, polynomial roots {eigenval-
ues) with positive real parts {corresponding 1o an unsiable
mechanical system) frequently appesr ss a resuli of mea-
surement noise and Hmited numerical accuracy, Similarly,
roots (eigenvalues) without complex conjugaies, which

wave no physical sense, may appear as a result of com-
puttions. In praciice, such roots are simply climimicd
from consideration without any analysis.

—
[}
Rt

From the above discossion, 1t 18 quite clear, thal a two siep
approach described above {currentty used by all commercial
modal analysis software packages) is not adequate, cspecially
when (he measured data contains noise. This represenis sig-
nificant practioal limitation, since thers are many struciures
(buildings, bridges for example) [or which a “noise free” dat
is almaost impossible to oblain,

5 PIRECT SIMULTANEOUS MODAL APPROXI-
MATION

in our algorithm we aim for direct simultancous approxi-
mation of eigenvalucs and eigenvectors {rom ail measured
{unctions kg {w). We use a Newion ieration method (5] o
search for the entire set of A, & = 1,...,5 and yy provid-
ing minimisation of the error fungtion {16). Newion ieration
method yields very fast convergence, provided we know a
reasonable initial approximation for the system eigenvalues
Y, 8= | S and eigenveclors .

Ay ¢ =1,

When the measured data contains no noise (for example 7y (w)
i5 computed numerically}, the eigenvalues and eigenvectors of
ihe sysiem can be reconstructed to within 7 significant dig-
its. (This siatement has been substantinted by reconstructing
9 gigenvalaes and eigenvectors from an cxample numerically
generajed data, startng from inital approzimation accurale
to within 59%). As the level of nolse increases, the accuracy
of the cigenvalue approximalion decreases, the relationship
being almost lincar.

When the measured dala fz.;,j {w) contains very litde of no
noise, the rate of convergence increases exponentially as the
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distance o a local optimum decreases. As the level of noise
in the data increases, the rate of convergence becomes slower,
Since the rate of convergence of the algorithm improves with
the accuracy of initial estimates, it is imporlant o ensure,
that such estimales arc as accurate as possible, otherwise,
the Newton itcration algorithm for the entire set of data can
take a long time to converge. Preliminary estimates [or A,
s = 1,..,5 are obwined from a smoothed cstimate of the
global kinelic energy of the system. This method gives A,
s = 1., 5 with accuracy better than 3%. To improve this
agcuracy, approximation of 2 single FRF function (usually a
driving point(s} FRF f‘zjj (fw) ¥ is performed via the Newton
Beration wechnigue using such preliminary estimates. This s
guite an efficient way for improving the accuracy of the initial
gstimates for A4, since the dimension of the problem is much
smailer than for all the avaiiable data, and only a few Newton
iterations arc normally required. In the next step, the initial
alues for A, s = 1, ..., .5 are entered to function (16) and the
corresponding estimates are computed {or the system cigen-
valucs using a lincar least square approximation procedure,
Finally, initial estimates for cigenvalues and eigenvectors are
used to initinte the Newton ieralion process, minimizing the
Lo -norm (16} for the entire set of data,

it should be pointed out, that A, and o, oblained as a re-
sult of such calculations are the best approximations of the
true cigenvaiues and eigenvectors of the structure, only if the
computed local minimum of the function (16) is the global
minimum. Newton iteration process always finds a loeal min-
imum, such that no improvement can be made by any small
perturbation of cigenvalues and eigenvectors, In many cases
we can siate (from physical considerations) that we indecd
have obtained the glebal optimum. However, we do nol have
the proof that we in fact found the giobal minimum, The prob-
lem of proving that the global minimum has been achieved is
very important, but it Teads 1o rather complicated mathemal-
ical analysis. Difficultics arise because we have (o invest-
gate the global geometry of an infintle dimensional manifold
which is iz a sense an “infinile dimensional Grassmanian’,
Points of thig manifold are 2-dimensional submanifolds L
in ][“L el The submanifold L, is the linear envelope
of the lollowing fractions :

i i

.
H

! ) - 19)
= Ay (i — M) (e — Ay (9

where A = {A}), s the set of eigenvalues of the transfer
matrix; the reader can fnd further details i [1].

5.1 Residusl modes

In practice, the frequency range for measurement of fﬁ;;j {w)
is Hmited. This means, that modes can exist outside the con-
sidered {frequency range. In our algorithm we add a number
of residual modes outside the frequency range of the data
it required, in the stage of estimaling the inkial values for
Agys = 10,80 In most cases adding just one or two tesid-
ual modes is sulficient to ke into account the effects of all
neglecied modes ocutside the frequency range of the measure-
ment, (It should be noted, that eigenvalues and cigenvectors
obtained for such modes could contain significant crrors).

&  APPLICATION

The newly developed Direct Simultancous Modal Approxi-
mation Method has been applied 1o extract eigenvalues and
cigenveciors of a reinforced concrate bridge near Rutherglen
in northern Victonia, Australia, from a single column of FRF's
obtaincd as a result of modal testing experiment. The bridge
was excited by & hydraulic shaker and its response was mea-
sured along a grid of 80 coordinates. Only 10 accelerometers
were available, so this set was relocated several times {0 mea-
sure the bridge response along all coordinates. 15 averages
have been performed for cach measurement of the FRFs, It is
impossible 1o depict all B0 FRFs | so we have selected just two,
representative variations from this set. Fig.1 demonstrates the
approximation of the measured Fregquency Response Function
(FRF) of the driving point. To tlustrate the guality of the Di-
rect Approximation Method we have shown in Fig.2 the FRF
I and 2 contain two plots cach. The upper plot is the ampli-
tede of the corresponding FREC hy; (4w)f) and the bottom
plotis the phase {tan ™ [Im (fy () / Be (g (i h)D

Raw and $itted TRF 1 L nerm= 0,1319
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As can be seen from Fig.l and Fig.2 all FRFs in the measured 2
set contain a significant level of noise and Direct Simubane-
ous Modal Approximation Method provides a very effective
way of filtering & oui. Note the exceptional accuracy of the
approximation the FRF phase (botiom plots) in both Figures
1 and 2. 3)

The Direct Simulianeous Modal Approximation Method
{DSMA) described in this paper uses a Newton iteration
technique to provide simultaneous approximation of the
cigenvalues and eigenveciors from all available data, that
is optimal in the sense of the least squares error.

It was shown using the example modal analysis performed
{or a concrete bridge, that the new DSMA method is su-
perior o the conventional method of experimental modat
analysis when the measured data containg noise.

The method finds a focal minimum {or the least squares
error function, Le finds a sel of cigenvalues and cigenvec-
tors which cannot be improved by small pertarbations, and
for this reason the estimation of the initial approximation
is important. Further research s required 1o design al-
gorittuns that guarantee the giobal minimum of the error
function.
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Fig.3. Sixth mode of the concrele bridge at 20,2616 He
reconstrucied from expenimenta! measurements,

The first 9 modes of the bridge have been identificd in the

frequency range from 5 to 45 Hz. Fig.3 demonstrates mode & g
al 20.26 Hz of the bridge, and also iHustrates the measurement
grid. A short verlical line at one of the grid points indicates it

the position of the shaker. We have chosen this mode 1o
demonstrate some of the advantages of the high quality Di-

rect Simultaneous Modal Approximation in modal analysis. It

can clearly be seen from the shape of the mode and also from {2
the FRF in Fig.1, that the shaker is located very close fo the

nodal line for mode &, Because of this unforunale position

of the shaker, contribution of mode 6 1o the system response

is minimal, To make things worse such a small contribution 3]
is embedded in the significant measurement noise. Despite o
this, using the Direct Simultancous Modal Approximation al-

gorithm described in this paper, the mode and its shape was
successiully reconstructed (o high precision, We would like o

point out, that we have alse tricd 10 use a conventional {2-siep) 4]
method based on rational polynomials, (belore the DSMA al-

gorithm was available) and we were not able 10 succeed in

oblaining this particular mode.

7 CONCLUSIONS

(1) Tt was demonstrated, thal existing “curve [iting” algo-
rithms used for modal analysis, do not cstimate eigenval- 6]
ues and eigenvectors simuliansously and therciore cannot
n general provide an optimal approximation of the Fre-
gquency Response Functions as well as the modal param-
eters of a structure. Existing algorithms are very difficult
1o use when the measurement data contains significant
lgvels of noise.
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